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Abstract

Although perceptual categorization has been studied extensively in psychology, response
times in categorization tasks have only recently become an important research topic [1, 2, 3,
4, 5, 6, 7, 8, 9]. In this article, we propose a connectionist model of categorization RT, called
CONCAT, which aims to provide a joint account of response times and choice proportions
in binary classification tasks. First, we outline the basic principles of the model. Next, we
present a perceptual categorization experiment and apply CONCAT to the results.

1 Principles of CONCAT

CONCAT is based on the EGCM-RT, which is a formal model of categorization RT proposed
by [5]. The EGCM-RT is not implemented as a connectionist model. CONCAT is a fairly
direct translation of the EGCM-RT into a connectionist framework. In this chapter, we cannot
discuss all aspects of the EGCM-RT that are relevant in the current context (see [5] for an in-
depth discussion of the EGCM-RT). Instead, we will describe the basic principles of CONCAT
without direct reference to its precursor, and without disussing the extensive evidence that
has been collected in support of the EGCM-RT (which also supports CONCAT). The main
difference between CONCAT and the EGCM-RT is that the EGCM-RT has a broader scope
than CONCAT. CONCAT applies only to stimuli with separable and binary dimensions, whereas
the EGCM-RT also explains RTs with stimuli that have continuous and/or integral dimensions.
A connectionist implementation of the full EGCM-RT will be reported elsewhere.

The architecture of CONCAT is presented in Figure 1. The model takes the form of a 4-
layer radial-basis function network (see [2]). The input nodes encode the stimulus. There is
one input node for each stimulus dimension. The state of the input nodes is characterized by
two numerical parameters. The first parameter (xip) is the value of stimulus i on dimension p
represented by the node. In the case of binary stimuli, 0 and 1 are used as possible dimension
values. The second parameter (ϕp) refers to the activation state of the node. Input nodes are
either active (ϕp = 1) or not (ϕp = 0).

Stimulus encoding is not all-or-none. Instead, the encoding process involves the activation
of input nodes over time, which corresponds to a process of sampling stimulus information.
The probability that input node x has been activated at or before time t after stimulus onset
(called the cumulative inclusion probability, see [3, 4, 5]) is given by an exponential distribution
function:

ix (t) = 1− exp (−qxt) (1)

In this equation, qx is the inclusion rate (or processing rate) of dimension x. Input nodes
that correspond to dimensions with a higher processing rate are usually activated faster than
nodes that correspond to dimensions with low processing rates.

The exemplar units correspond to individual stimuli that were stored during category learn-
ing. Whenever an input unit is activated, the activation of the exemplar nodes is updated.
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Figure 1: Architecture of CONCAT. A full description of the model’s components is provided
in the main text.

Exemplar node activation equals the similarity between the current input pattern and the pat-
tern that corresponds to the stimulus they encode. Similarity is defined as

sij (Φ) = exp

−c

 P∑
p=1

up [ϕp |xip − xjp|]r
q/r

 (2)

in which sij(Φ) is the similarity between stimulus i and stored exemplar j given set Φ of activated
input nodes, c is a generalization value, p is an index for the dimensions (the total number of
dimensions is P ), up is the utility value of dimension p (0 ≤ u ≤ 1,

∑
u = 1), ϕp indicates

whether the node for dimension p is active, and xip and xjp are the values of the stimulus and
the stored exemplar on dimension p. In all applications in this article, q was set equal to 1 (see
[5]). The utility value of a dimension indicates how important that dimension is in the similarity
computation. Dimensions that are highly diagnostic tend to have a high utility value (see [3, 7]).
As a consequence of the time course of input node activation and the similarity computation
that takes place in the exemplar nodes, the activation of the exemplar nodes changes over time,
as more stimulus dimensions are processed.

In the third layer of the network, the category units compute the total similarity of the
input pattern to all exemplars from each category. This is achieved by letting the activation of
each category node correspond exactly to the sum of the activations of the exemplar nodes that
belong to the category.

Finally, whenever an input unit has been activated and activation has spread to the category
nodes, a decision is made as to whether sufficient stimulus information has been acquired to
stop sampling and initiate a response, or whether more stimulus information is needed. This
decision is made at the highest level of the network, that of the response units. The summed
similarity of the stimulus to all exemplars from one category is divided by the summed similarity
of the stimulus to all relevant exemplars in memory. If the total similarity to A exemplars is
high relative to the total similarity to B exemplars, the probability that the subject will stop
sampling and produce an A response is relatively high compared to the probability of stopping
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sampling and producing a B response. The probability that sampling will stop (for stimulus i
and set of active input units Φ) and that a category A response will be given equals

P (Stop & A|i,Φ) =
[

bASiA (Φ)
bASiA (Φ) + (1− bA) SiB (Φ)

]θ

. (3)

In this equation, bA is the response bias for category A, (0 ≤ bA ≤ 1), and SiA is the
activation of category node A. The parameter θ can have any value larger than or equal to 1.
This choice ratio can also be interpreted as a measure of confidence in the category membership
of the stimulus. If the subject is very confident about category membership, there is a high
probability that sampling will stop and a response will be initiated.

Analogously, the probability that sampling will stop and a category B response will be given
is

P (Stop & B|i,Φ) =
[

bBSiB (Φ)
(1− bB) SiA (Φ) + bBSiB (Φ)

]θ

. (4)

If all stimulus dimensions have been sampled, the stopping probability is defined as 1 and a
response will be initiated immediately. A further assumption is that

P (Stop|i,�) = 0, (5)

which means that at least one dimension will be sampled before stopping.
To summarize, CONCAT assumes that (i) stimulus dimensions are sampled stochastically in

the earliest stages of categorization, and (ii) that the relative summed similarity to exemplars
from the alternative categories determines the probability that sampling is interrupted and a
response is initiated. The model predicts response time differences between stimuli in terms of
the expected duration of dimension processing, and in terms of the number of dimensions that
are processed on individual trials.

2 Experimental test of CONCAT

The primary purpose of this experiment is to test the ability of CONCAT to account for joint
categorisation accuracy and RT data from a standard speeded category learning experiment.

2.1 Method

2.1.1 Participants

Ten undergraduate and postgraduate psychology students from the University of Birmingham
participated in the experiment [9]. The undergraduates who took part were given credit towards
the Psychology department’s research participation scheme.

2.1.2 Apparatus and stimuli

The experiment was carried out on an Elonex PC-433 computer with a Vale EC 33 cm SVGA
colour monitor using a display mode with 640 pixels horizontally and 480 pixels vertically. Par-
ticipant’s responses were registered by two microswitches connected to the computer’s parallel
port. The stimuli used were drawings of aeroplanes viewed from above which varied on four
binary dimensions—shape of nose (round or pointed), shape of wings (straight or tapered),
number of engines (two or four), and shape of tail (square or rounded). Two example stimuli
showing the full range of dimension values are shown in Figure 2.
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Figure 2: Sample stimuli used in the experiment

2.1.3 Design and procedure

The category structure, which comprised a total of eight stimuli, is shown in Table 1. The
structure is regular in that each stimulus differs on two dimensions from six of the other stimuli
and on all dimensions from one stimulus in the alternative category. This regularity is also
apparent in the arrangement of the stimuli as on each dimension, three of the four stimuli in a
category have one value while one stimulus has the opposite value. In addition, no dimension is
more predictive of a category than any other.

The experiment was a standard categorisation reaction time experiment which consisted of a
training stage, in which participants were required to learn to classify stimuli into two categories,
followed by a transfer stage, where the task was to classify the same stimuli again as quickly as
possible without sacrificing accuracy. In both training and transfer stages, participant’s category
responses were recorded and in the transfer stage, the time of each response (in milliseconds)
was also recorded. In the training stage, participants were presented with the stimuli in blocks,
each block consisting of the complete set of training stimuli presented sequentially in random
order. Training continued until two blocks in succession had been categorised correctly. On each
training trial, a white fixation cross would appear at the centre of the blank computer screen
for a period of 400 ms followed by a period of 100 ms where the screen was again blank. Then
one stimulus chosen at random would appear at the centre of the screen. When one of the two
response buttons was pressed, an auditory signal indicating the correctness of the response was
given for a period of 500 ms and the screen would be cleared. If the category response was
correct, a 600 Hz (high) tone was given whereas if it was incorrect, a 100 Hz (low) tone was
given. An interval of 1500 ms separated each training trial. To eliminate any effect of response
bias due to hand preference, category labels were randomly assigned to left and right response
buttons.

After a short break, participants underwent a transfer stage in which blocks of stimuli were
presented again as during the training stage. Trials in the transfer phase were identical to
training trials except that no auditory feedback was given. Participants were instructed to
categorise the planes as before but this time to be as fast as they could while trying to remain
as accurate as possible. Each participant categorised a total of fifty blocks in the transfer stage,
being allowed to rest for a few minutes twice during the session, after the completion of 17 and
34 blocks.
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Table 1: Structure of stimuli used in the experiment
Stimulus Stimulus Dimension

Structure Number Nose Wings Engines Tail
Category A 1 1 1 1 0

2 1 1 0 1
3 1 0 1 1
4 0 1 1 1

Category B 5 0 0 0 1
6 0 0 1 0
7 0 1 0 0
8 1 0 0 0

2.2 Results

2.2.1 Training

The mean number of blocks required to achieve two consecutive correct blocks was 42.2 (SD =
23.1). A simple measure of the difficulty of learning the category structure is the mean error
frequency for each stimulus over the course of training across participants. These frequencies
are presented in Table 2.

Table 2: Mean error frequencies during training
Stimulus Error Frequency

1 1110 (A) 11.2
2 1101 (A) 21.4
3 1011 (A) 12.3
4 0111 (A) 12.3
5 0001 (B) 8.50
6 0010 (B) 14.8
7 0100 (B) 13.3
8 1000 (B) 12.9

An analysis of variance (ANOVA) on the mean correct responses yielded a significant effect
of stimulus F (7, 63) = 2.49, p < .05, MSE = .062. In the training stage, participants’ errors
were generally evenly distributed across the stimuli, with the exception of stimulus 2 which
was on average misclassified more often and stimulus 5 which was in general categorised more
accurately. The fact that stimuli 2 and 6 had the highest error rates suggests the possibility
that participants were paying greatest attention to the engines dimension as these two stimuli
differed from the others in their category on this dimension. Conversely, the low error rates
of stimuli 1 and 5 suggests that relatively little attention was being paid to the tail dimension
during the training stage.

According to an MDS analysis of similarity, if attention is focused upon a particular di-
mension, the psychological space in which the stimuli are represented is stretched along that
dimension, resulting in a decrease in similarity between stimuli which differ on the dimension.
Conversely, if relatively little attention is paid to a dimension, perceived differences between
stimuli on that dimension will be reduced, resulting in an increase in similarity between stimuli
which differ on the dimension. In terms of the data presented in Table 2, a relatively high
level of attention to the engines dimension will decrease the similarity between stimulus 2 and
the category A stimuli and stimulus 6 and the category B stimuli. Therefore, the probability
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that they are classified correctly as belonging to their respective categories will be reduced. In
contrast, according to the same analysis, the relatively high levels of classification accuracy for
stimuli 1 and 5 suggests that perceived differences that these stimuli have with other stimuli in
their respective categories have been minimised, leading to the conclusion that the dimension
upon which they differ is receiving relatively little attention.

Given that the category structure is such that no dimension is more predictive than any
other, one plausible explanation for the uneven distribution of participants’ attention is that
stimulus dimensions may be more or less salient than others, (i.e. the engines dimension is
highly salient whereas the tail dimension is not particularly salient). It is important to note,
however, that effects of differences in salience, reflected by mean error rates from the entire
course of training, can be expected to reduce as training progresses as participants are required
to attend to all dimensions equally in order to achieve the criterion level of accuracy.

2.2.2 Transfer

The proportions of category A responses and mean RTs for each stimulus are shown in Table 3.
An ANOVA on the mean RTs produced a significant effect of stimulus F (7, 63) = 6.81, p < .001,
MSE = 73, 617. An ANOVA on the proportions of correct responses found no significant effect
of stimulus. This latter result is possibly due to the fact that participants had been trained
to a relatively high criterion of performance in the training stage, as is evidenced by the high
levels of accuracy for all stimuli in the transfer stage (mean correct response proportion over all
stimuli = .91, SD = 0.022).

Table 3: Proportions of category A responses (RP) and mean response times (RT in milliseconds)
for each stimulus.

Stimulus RP RT
1 1110 (A) 0.904 1061
2 1101 (A) 0.878 1125
3 1011 (A) 0.916 1104
4 0111 (A) 0.932 1041
5 0001 (B) 0.070 854
6 0010 (B) 0.100 1077
7 0100 (B) 0.074 981
8 1000 (B) 0.124 1058

To test the hypothesis that more errors during category learning are accompanied by slower
RTs during transfer, the mean error frequencies from the training phase were correlated with
the mean RTs. The resulting correlation coefficient was .68. This moderately high positive
correlation can be confirmed by studying the values for individual stimuli. Stimulus 5, for
example, has the lowest error frequency in the training stage and also has the shortest RT and
one of the highest accuracy rates in the transfer stage. The opposite pattern is found with
Stimulus 2, which has the highest error frequency in the training stage and the longest RT and
one of the lowest accuracy rates in the transfer stage.

The error rates in the transfer stage were also correlated with mean RTs, producing a corre-
lation coefficient of .61. Again, this correlation is supported by the values of individual stimuli.
For example, the three stimuli with the highest accuracy rates in the transfer stage—stimuli 4,
5 and 7, are the stimuli with the shortest mean RTs and the stimulus with the lowest level of
accuracy-stimulus 2, has the longest mean RT. There are several differences between accuracy
levels in the transfer stage and error rates in the training stage (the correlation between these
sets of values = -.64). For example, stimulus 4 is classified most accurately in the transfer
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stage although the error frequency for that stimulus in the training stage is not particularly
low. In addition, stimulus 7 is also accurately classified in the transfer stage despite having a
relatively high error frequency in the training stage. It should be remembered, however, that
the differences in the accuracy levels between the stimuli in the transfer stage are very small.

3 Model-based analysis

Before applying CONCAT to the data, one may attempt to anticipate some of the parameter
values it will estimate based upon knowledge of the model’s processing assumptions and the
observed data. For example, the low error frequency in the training stage and high level of
accuracy and short RT in the transfer stage for stimulus 5 may suggest that the low salience of the
tail dimension continued to affect categorisation performance throughout the entire experiment.
Similarly, the relatively low accuracy levels and long RTs for stimuli 2 and 6 may suggest that
the engines dimension was particularly salient and that this also affected performance in the
transfer stage, despite the high training criterion. One may expect CONCAT to allocate low
and high values for the inclusion rate parameters to these dimensions respectively. The high
level of accuracy for stimulus 4 can also be expected to result in high attention and inclusion
rate values for the nose dimension.

CONCAT was applied jointly to the category A response proportions and RT data. The
predicted category A response proportions and RTs produced by the model are displayed in
Table 4. Best fitting parameter values were found by using a search algorithm that maximised
the summed coefficient of variation (R2) for category A response proportions and RTs. Category
A response proportions were used for model optimisation rather than proportions of correct
responses in order to maximise the variability in the response proportions and so reduce their
effect in the estimation of total goodness-of-fit. The primary reason for doing this is to increase
the effect of RT data on model optimisation because the ability of the model to predict RTs is
the main focus of this investigation.

Table 4: Observed (Obs) and predicted (Pred) category A response proportions (RP) and re-
sponse times (RT in milliseconds) for each stimulus.

RP RT
Stimulus Obs Pred Obs Pred

1 1110 (A) 0.904 0.981 1061 1062
2 1101 (A) 0.878 0.858 1125 1096
3 1011 (A) 0.916 0.935 1104 1102
4 0111 (A) 0.932 0.950 1041 1091
5 0001 (B) 0.070 0.001 854 860
6 0010 (B) 0.100 0.001 1077 1061
7 0100 (B) 0.074 0.001 981 976
8 1000 (B) 0.124 0.001 1058 1050

CONCAT had eleven free parameters: four dimension processing rates q, a generalisation
parameter c, three dimension utility values u, (the utility value of the fourth dimension is
constrained by the values of the other three as all utility values are required to sum to 1), a
category response bias parameter b, the parameter θ in the power function which determines the
expected duration of dimension processing and a residual time parameter tres. The best fitting
parameter values estimated for the model are shown in Table 5.

The model provided a good fit to both the RT data (R2 = .93) and a reasonable fit to the
choice proportion data (R2 = .98). In particular, the model was able to predict the short RTs
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for stimuli 5 and 7 and also predicted that stimuli 2 and 3 had the longest RTs. As expected, the
dimension inclusion rate parameter values estimated by the model indicate that the nose and
engines dimensions were most salient and that the tail dimension was the least salient of all. The
utility parameter for the tail dimension also had the lowest value (0.000), indicating that this
dimension was not taken into account at all. The category bias parameter was relatively low,
indicating that, according to the model, participants had a slight tendency to favour a category
B response (note that a value of b = 0.5 indicates no category bias, b > 0.5 indicates a category
A bias and b < 0.5 indicates a category B bias). Because of the relationship between response
accuracy and RT embodied by the model, this is probably due to the fact that the average
observed RT for category B stimuli is 360 ms shorter than that for the category A stimuli. This
is also reflected in the very low response proportions for the category B stimuli predicted by the
model.

Table 5: Best-fitting parameter values for CONCAT. Note: The value of the utility parameter
for the tail dimension (in brackets) is constrained by the utility values of the other three.

Parameter Value
q(nose) 97.564
q(wings) 0.129

q(engines) 37.583
q(tail) 0.003

θ 11.871
tres(ms) 723
u(nose) 0.298
u(wings) 0.342

u(engines) 0.360
[u(tail)] 0.000

c 4.284
b 0.345

4 Discussion

The main reason for conducting this experiment was to test the CONCAT model on data
from a standard speeded category learning experiment and to analyse its predictions. CONCAT
provided a close fit to the data. The flexibility of CONCAT in terms of its ability to accommodate
dimensional salience and attention distribution separately is likely to be the main reason for the
model’s close fit to the combined data.

The success of the model in accounting for the data provides further support for the as-
sumption that RT differences between stimuli can be explained in terms of the time course of
feature processing (see [5]). Further research is needed to determine whether the time course
of feature processing is sufficient to explain RT differences between stimuli in a wider range of
categorization tasks, or whether other mechanisms are needed as well (e.g. [8]).
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